

National Institute for Public Health and the Environment Ministry of Health, Welfare and Sport

Introduction

OECD Sponsorship Programme for the Testing of Manufactured Nanomaterials:

need for adequate and complete characterisation of NMs

to enable a further evaluation of their (toxicological) properties

Aim of the evaluation:

Evaluate whether a specific method applied to determine a certain physico-chemical property is suitable for the specific property

- for a specific nanomaterial
- for a (broad) range of different nanomaterials

Process of method evaluation

- Methods from dossiers of the Testing Programme ("May 2015")
- Nominated experts from CA, EC, NL, US, JP, BIAC
- Evaluations of test methods for physico-chemical properties
 - Web-based questionnaire >> semi-structured answers
 - For each parameter each applied method evaluated at least once; extrapolation to other NM(s) where possible
 - Opinion of one or a few individual expert(s) >>
 Not necessarily represents consensus
- Final document scrutinised by experts from CA, DE, EC, NL, BIAC

Process of method evaluation

- Methods from dossiers of the Testing Programmer, March 015")
- Nominated experts from CA, EC_NL, S, IP_BIAC
- Evaluations of test methods for physico-chemical respectives
 - we -ba ed pu sconnaire >> semi-structured ap we s
 - For each parameter each applied it ethod evaluated at least once;
 extrapolation to of en ill (s) where possible

Opinion of on one a few individual expert(s) as
 Not necessarily represents one applies

• Final document scrutinised by experts from CA, DE, EC, NL, BIAC

Parameter	MWCNT	SWCNT	Ag	sio ₂	CeO ₂	ZnO	TiO ₂	Fullerenes	Dendrimers	Gold	Nanoclay
Chemical composition											
Aggregation/agglomeration											
Particle size distribution											
Crystalline phase											
Dustiness											
Specific surface area											
Water solubility/Dispersibility											
Zeta potential											
Photocatalytic activity											
Porosity											
Redox potential											
Radical formation potential											
Crystallite size											
Surface chemistry											
Pour density											
K _{ow}											

Summary of evaluation

Parameter	Broad range of NMs	Certain NMs only	Not suitable
Chemical composition	XPS	ICP/OES; EDX	
Aggregation / Agglomeration	AFM	TEM; SEM; DLS	Turbidity
Particle size distribution	CLS; TEM; SEM	DLS(+DOSY-NMR); DMA	Laser diffraction
Crystalline phase	XRD		Raman; TEM; SEM
Dustiness	(small) rotating drum	Continuous drop tester	Vortex shaker
Specific surface area		BET	SAXS
Water solubility / Dispersibility	Shake flask method	Spectrometry; filtr.+spectr.	
Zeta potential	ELS	Laser-Doppler electrophoresis	
Photocatalytic activity		RhodB; DPPH; Hydroxyl generation; Orange II degr.	Degradation of aldehyde
Porosity	BET; BJH	Mercury porosimetry	
Redox potential			Potentiometry; Oxo-Dish-O ₂
Radical formation potential	EPR / ESR	KI & optical absorbance	Benzoic acid PBS
Crystallite size	XRD		
Surface chemistry		XPS	EDX; Liquid chromatography

Summary of evaluation

Parameter	Broad range of NMs	Certain NMs only	Not suitable
Chemical composition	XPS	ICP/OES; EDX	
Aggregation / Agglomeration	AFM	TEM; SEM; DLS	Turbidity
Particle size distribution	CLS; TEM; SEM	DLS(+DOSY-NMR); DMA	Laser diffraction
Crystalline phase	XRD		Raman; TEM; SEM
Dustiness	(small) rotating drum	Continuous drop tester	Vortex shaker
Specific surface area		BET	SAXS
Water solubility / Dispersibility	Shake flask method	Spectrometry; filtr.+spectr.	
Zeta potential	ELS	Laser-Doppler electrophoresis	
Photocatalytic activity		RhodB; DPPH; Hydroxyl generation; Orange II degr.	Degradation of aldehyde
Porosity	BET: BJH	Mercury porosimetry	
Redox potential NO sui	table method for	r Redox Potentia	ometry; Oxo-Dish-O ₂
Radical formation potential	EPR / ESR	Ki & Optical absorbance	Benzoic acid PBS
Crystallite size	XRD		
Surface chemistry		XPS	EDX; Liquid chromatography

Conclusions

- Most parameters: one or more suitable methods available
 - some methods only applicable subset of nanomaterials
 - some methods only applicable under certain conditions
- Most methods not standardised (yet) (for nanomaterials)
 - sample preparation
- The **reporting** of methodology needs improvement
 - e.g. sample preparation, test conditions

Recommendations (1/2)

Chemical composition

- Energy dispersing X-ray analysis (EDX)
- Inductively coupled plasma/optical emission spectrometry (ICP/OES) (ICP/MS?)

Aggregation/agglomeration

- Transmission electron microscopy (TEM)
- Scanning electron microscopy (SEM)

Particle size distribution

- Dynamic Light Scattering (DLS)
- Centrifugal Liquid Sedimentation (CLS)
- Differential Mobility Analysis (DMA)
- Transmission electron microscopy (TEM)
- Scanning electron microscopy (SEM)

Recommendations (1/2)

Chemical composition

- Energy dispersing X-ray analysis (EDX)
- Inductively coupled plasma/optical emission spectrometry (ICP/OES) (ICP/MS?)

Aggregation/agglomeration

- Transmission electron microscopy (TEM)
- Scanning electron microscopy (SEM)

Particle size distribution

- Dynamic Light Scattering (DLS)
- Centrifugal Liquid Sedimentation (CLS)
 ISO method available
- Differential Mobility Analysis (DMA)
- Transmission electron microscopy (TEM)
- Scanning electron microscopy (SEM)

CEN & ISO develop

Recommendations (2/2)

Crystalline phase

• X-ray diffraction (XRD)

Dustiness

- Small rotating drum
- (continuous drop tester)

Radical formation potential

• Electron paramagnetic resonance / electron spin resonance

Crystallite size

• X-ray diffraction (XRD)

Recommendations (2/2)

Crystalline phase

• X-ray diffraction (XRD)

Dustiness

- Small rotating drum
- (continuous drop tester)

Radical formation potential

Electron paramagnetic resonance / electron spin resonance / electron spin resonance

Crystallite size

• X-ray diffraction (XRD)

Recommendations

- Sample preparation protocols
- Reference nanomaterials
- Standardised media
 - biologically relevant test media

Further details:

"EVALUATION OF METHODS APPLIED IN THE OECD-WPMN TESTING PROGRAMME – 1: METHODS FOR PHYSICO-CHEMICAL PROPERTIES"

Results: chemical composition

Broad range of NMs	Certain NMs only	Not suitable
 XPS 	ICP/OESEDX	

- Often very limited information on method used
- ICP/OES
 generally accepted method
 - NOT all elements
- EDX
 elements above carbon
 - NOT for complex composition / matrices, and large aggregates
 - suitable method for determining chemical composition
 - NOT for coated materials

XPS

Results: Aggregation / Agglomeration

Broad range of NMs	Certain NMs only	Not suitable
 AFM 	TEMSEMDLS	 Turbidity

- AFM In solution
 - Vacuum has influence; only 2D picture
 - Similar as TEM; easier sample prep
 - NOT <10 nm
 - Issue: particles vs. aggregates/agglomerates
 - Useful when maximum AND polydispersity index are given
 - Only qualitative

TFM

SEM

DLS

Turbidity

Results: Particle size distribution

	Broad range of NMs	Certain NMs only	Not suitable		
•	CLS	DLS	Laser Diffraction		
•	TEM	 DLS + DOSY NMR 			
•	SEM	• DMA			
	 CLS Mass based: errors in calibration and shape/size estimates 				
	TEM • Lir	Limited to primary particle size; only 2D picture			

- Similar as TEM; easier sample prep; more accurate SEM ~100 nm
 - Issue: particles vs. aggregates/agglomerates; DOSY NMR only g/L
 - Aerosols and suspensions; less issues with
 - aggregates/agglomerates Only larger primary particles (> 50 nm) diffraction

DIS

DMA

Laser

Results: Crystalline phase

Broad range of NMs	Certain NMs only	Not suitable
• XRD		Raman Spectral analysis
		• IEM
		• SEM

- XRD
 A generally accepted and suitable method
- Raman Spectral May be suitable, but insufficient information for analysis
- TEM

SEM

- May be suitable, but insufficient information for evaluation
- May be suitable, but insufficient information for evaluation

Results: Dustiness

٠

	Broad range of NMs	Certain NMs only	Not suitable
•	Rotating drum Small rotating drum	Continuous drop tester	Vortex shaker

- rotating drum
 Standardised method (EN-15051:2006)
- continuous drop tester
- less suitable if caking or fluffy powders

Standardized under EN-15051:2006

- vortex shaker
- Not representative for health-relevant dustiness

Results: Specific surface area

Broad range of NMs	Certain NMs only	Not suitable
	• BET	• SAXS

- BET
 Standardised under ISO 9277:2010
 - Suitable unless gas is absorbed
 - For microporous solids specific adaptations are needed
 - Not recommended as a primary method

SAXS

Results: Water solubility and Dispersibility*

Broad range of NMs	Certain NMs only	Not suitable
 Shake flask method 	 Spectrometry Filtration and centrifugation 	

- Shake flask
 Needs further evaluation
 - Spectrometry Suitable for SiO₂, needs further evaluation
 - Applicable to soluble nanomaterials
 - Suitability for materials embedded in matrix?

* Strictly speaking water solubility and dispersibility are different parameters, but in practice difficult to distinguish.

Filtration &

centrifugation

Results: Zeta potential

Broad range of NMs	Certain NMs only	Not suitable
• ELS	 Laser Doppler Electrophoresis 	

- ELS
 Standardized under ISO 13099-2:2012
 - Suitable if dispersible in liquid
- Laser Doppler
 NOT for hydrophobic nanomaterials
 Electrophoresis
 NOT in high conductivity media

OECD WPMN 15 – Evaluation of Methods for Physico-Chemical Properties | 3 November 2015

Results: Photocatalytic activity

Broad range of NMs	Certain NMs only	Not suitable
	 Rhodamine-B DBBH 	 Degradation of acetaldebyde
	 DPPH Hydroxyl generation 	acetaidenyde
	under UV-light + EPR	
	 Orange II degradation + UV-Vis 	

- Rhodamine-B
 NOT for coloured suspensions
 - NOT for coloured suspensions
- Hydroxyl generation
- Orange II degradation
- Degradation of acetaldehyde

- Suitable for TiO₂, insufficient information for others
- Suitable for TiO₂, insufficient information for others
- Insufficiently quantitative

Results: Porosity

Broad range of NMs	Certain NMs only	Not suitable
• BET / BJH	 Mercury porosimetry 	

- Interpretation depends on pressure/temperature and model used
- BET / BJH
 Standardised under ISO 15901-2 (different calculations)
 - NOT for microporous nanomaterials
 - Standardized under ISO 1590-1
 - NOT for metal-containing nanomaterials

Mercury

porosimetry

Results: Redox potential

Broad range of NMs	Certain NMs only	Not suitable
		Potentiometry
		• Oxo-Dish O ₂ -detection

- Potentiometry
 Too sensitive to ions in test medium
- O₂-detection
 O₂-levels may not correlate with redox potential

Results: Radical formation potential

Broad range of NMs	Certain NMs only	Not suitable
• EPR / ESR	 Potassium iodide and optical absorbance 	Benzoic acid PBS

- EPR / ESR
 General suitable
- Potassium iodide and optical absorbance
- Suitable for nanomaterials that generate hydroxyl radicals

- Benzoic acid PBS
- Large influence of sample preparation and analysis conditions
- Which specific radicals should be measured?

Results: Crystallite size

Broad range of NMs	Certain NMs only	Not suitable
• XRD		

- XRD
 General suitable
 - Crystallites sizes < 100 nm

Results: Surface chemistry

Broad range of NMs	Certain NMs only	Not suitable
	• XPS	• EDX
		Liquid chromatography

- NOT distinction between core and specific surface
- XPS
 Seems to be the only useable method